290 research outputs found

    Evidence of variant intra- and interspecific scaling of tree crown structure and relevance for allometric theory

    Get PDF
    General scaling rules or constants for metabolic and structural plant allometry as assumed by the theory of Euclidian geometric scaling (2/3-scaling) or metabolic scaling (3/4-scaling) may meet human’s innate propensity for simplicity and generality of pattern and processes in nature. However, numerous empirical works show that variability of crown structure rather than constancy is essential for a tree’s success in coping with crowding. In order to link theory and empiricism, we analyzed the intra- and inter-specific scaling of crown structure for 52 tree species. The basis is data from 84 long-term plots of temperate monospecific forests under survey since 1870 and a set of 126 yield tables of angiosperm and gymnosperm forest tree species across the world. The study draws attention to (1) the intra-specific variation and correlation of the three scaling relationships: tree height versus trunk diameter, crown cross-sectional area versus trunk diameter, and tree volume versus trunk diameter, and their dependence on competition, (2) the inter-specific variation and correlation of the same scaling exponents (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} {\upalpha}_{h,d}, {\upalpha}_{{\text{csa,}}d} \end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} {{\upalpha}}_{v,d} \end{document}) across 52 tree species, and (3) the relevance of the revealed variable scaling of crown structure for leaf organs and metabolic scaling. Our results arrive at suggesting a more extended metabolic theory of ecology which includes variability and covariation between allometric relationships as prerequisite for the individual plant’s competitiveness

    Analysing forest development under changing environmental conditions – novel information for the forest management by combining models demonstrated for the forest enterprise Zittau

    Get PDF
    Waldwachstumsmodelle sind ein ideales Werkzeug, um Auswirkungen verĂ€nderter Umweltbedingungen auf das Wachstum der BĂ€ume aufzuzeigen. Ziel des Teilprojektes „Waldwachstumsreaktionen und Systemprozesse“ im Rahmen von ENFORCHANGE war, durch die Kombination von Wachstumsmodellen mit unterschiedlichen methodischen AnsĂ€tzen regionale Auswirkungen standörtlicher und klimatischer VerĂ€nderungen auf die Waldentwicklung zu analysieren und somit bessere Grundlagen fĂŒr eine angepasste Forstbetriebsplanung zu schaffen. Anhand des physiologischen Wachstumsmodells BALANCE wurde der Einfluss der prognostizierten KlimaĂ€nderungen auf das Wachstum der BĂ€ume abgeschĂ€tzt. Die fĂŒr verschiedene Baumarten und regionaltypische BestĂ€nde gewonnenen Reaktionsmuster konnten anschließend in das managementorientierte Wachstumsmodell SILVA ĂŒbertragen werden. Die Entwicklung reprĂ€sentativer WaldbestĂ€nde wurde in SILVA fĂŒr einen Zeitraum von 30 Jahren simuliert, wobei verschiedene Nutzungsszenarien untersucht wurden, um HandlungsspielrĂ€ume und mögliche strategische Planungen fĂŒr Forstbetriebe aufzuzeigen. Die gewonnenen Erkenntnisse fĂŒr die praktische Betriebsplanung wurden am Beispiel des kommunalen Forstbetriebes Zittau dargestellt. Es wird deutlich, wie die Forstplanung von derartigen Szenarioanalysen profitieren kann. Die Simulationsrechnungen unter Annahme geĂ€nderter KlimaverhĂ€ltnisse zeigen, dass die BestĂ€nde unter diesen Bedingungen ein verringertes Reaktionsvermögen auf waldbauliche Maßnahmen aufweisen, was insbesondere bei den ZuwĂ€chsen bemerkbar ist. Dabei haben LaubholzbestĂ€nde, die bereits jetzt auf 27% der BetriebsflĂ€che stocken, vermutlich eine Pufferwirkung und mildern die Auswirkungen der KlimaĂ€nderungen auf die ProduktivitĂ€t des Gesamtbetriebes ab.Forest growth models are versatile instruments for analysing the influence of environmental changes on plant growth. The aim of this study was to analyse possible adaptation strategies by model simulations combining different growth models. By using the process oriented growth model BALANCE we estimated the influence of climate change on tree growth. The reaction patterns of different and region specific forest stands were then implemented as algorithms in the management-oriented growth model SILVA. The growth of forest stands was simulated with SILVA over 30 years focussing on management options to test different adaption strategies. This approach of combining models with different paradigms is demonstrated for the forest enterprise Zittau. The results of the simulations for the Zittau enterprise convey how forest planning can profit by long term information from scenario analysis. Climate change simulations show that forest stands can loose capacity – e.g. increase capacity – to react on management measures. That means a loss of regulation alternatives for forest planning under the used climate change scenario. A hardwood percentage of 27% in the Zittau forest, on the other hand, possibly has a certain buffer function and moderates the climate change effects on production

    Tree species richness enhances stand productivity while stand structure can have opposite effects, based on forest inventory data from Germany and the United States of America

    Get PDF
    Background: In recent studies, mixed forests were found to be more productive than monocultures with everything else remaining the same. Methods: To find out if this productivity is caused by tree species richness, by a more heterogeneous stand structure or both, we analyzed the effects of forest structure and tree species richness on stand productivity, based on inventory data of temperate forests in the United States of America and Germany. Results: Having accounted for effects such as tree size and stand density, we found that: (I) tree species richness increased stand productivity in both countries while the effect of tree size heterogeneity on productivity was negative in Germany but positive in the USA; (II) productivity was highest at sites with an intermediate amount of precipitation; and (III) growth limitations due water scarcity or low temperature may enhance structural heterogeneity. Conclusions: In the context of forest ecosystem goods and services, as well as future sustainable forest resource management, the associated implications would be: Tree species richness is vital for maintaining forest productivity. As an optimum amount of precipitation is accompanied by the highest productivity, changes in climatic conditions should be considered when planning. Resource limitations enhance structural heterogeneity, which in turn can have positive or negative effects on stand productivity. Furthermore, we discuss the difficulties encountered when analyzing different national forest inventories and large data sets

    Comparison of forest attributes derived from two terrestrial lidar systems.

    Get PDF
    Abstract Terrestrial lidar (TLS) is an emerging technology for deriving forest attributes, including conventional inventory and canopy characterizations. However, little is known about the influence of scanner specifications on derived forest parameters. We compared two TLS systems at two sites in British Columbia. Common scanning benchmarks and identical algorithms were used to obtain estimates of tree diameter, position, and canopy characteristics. Visualization of range images and point clouds showed clear differences, even though both scanners were relatively high-resolution instruments. These translated into quantifiable differences in impulse penetration, characterization of stems and crowns far from the scan location, and gap fraction. Differences between scanners in estimates of effective plant area index were greater than differences between sites. Both scanners provided a detailed digital model of forest structure, and gross structural characterizations (including crown dimensions and position) were relatively robust; but comparison of canopy density metrics may require consideration of scanner attributes

    Modeling Ecosystem Services for Park Trees : Sensitivity of i-Tree Eco Simulations to Light Exposure and Tree Species Classification

    Get PDF
    Ecosystem modeling can help decision making regarding planting of urban trees for climate change mitigation and air pollution reduction. Algorithms and models that link the properties of plant functional types, species groups, or single species to their impact on specific ecosystem services have been developed. However, these models require a considerable effort for initialization that is inherently related to uncertainties originating from the high diversity of plant species in urban areas. We therefore suggest a new automated method to be used with the i-Tree Eco model to derive light competition for individual trees and investigate the importance of this property. Since competition depends also on the species, which is difficult to determine from increasingly used remote sensing methodologies, we also investigate the impact of uncertain tree species classification on the ecosystem services by comparing a species-specific inventory determined by field observation with a genus-specific categorization and a model initialization for the dominant deciduous and evergreen species only. Our results show how the simulation of competition affects the determination of carbon sequestration, leaf area, and related ecosystem services and that the proposed method provides a tool for improving estimations. Misclassifications of tree species can lead to large deviations in estimates of ecosystem impacts, particularly concerning biogenic volatile compound emissions. In our test case, monoterpene emissions almost doubled and isoprene emissions decreased to less than 10% when species were estimated to belong only to either two groups instead of being determined by species or genus. It is discussed that this uncertainty of emission estimates propagates further uncertainty in the estimation of potential ozone formation. Overall, we show the importance of using an individual light competition approach and explicitly parameterizing all ecosystem functions at the species-specific level

    Impact of Climate Trends and Drought Events on the Growth of Oaks (Quercus robur L. and Quercus petraea (Matt.) Liebl.) within and beyond Their Natural Range

    Get PDF
    Due to predicted climate change, it is important to know to what extent trees and forests will be impacted by chronic and episodic drought stress. As oaks play an important role in European forestry, this study focuses on the growth response of sessile oak (Quercus petraea (Matt.) Liebl.) and pedunculate oak (Quercus robur (L.)) under contrasting climatic conditions. Analyses cover both site conditions of their natural occurrence (Southern Germany and Northeast Italy) and site conditions beyond their natural range (South Africa). The sites beyond their natural range represent possible future climate conditions. Tree-ring series from three different sites were compared and analysed using dendrochronological methods. The long-term growth development of oak trees appears to be similar across the sites, yet the growth level over time is higher in the drier and warmer climate than in the temperate zone. When compared with previous growth periods, growth models reveal that oak trees grew more than expected during the last decades. A recent setback in growth can be observed, although growth is still higher than the model predicts. By focusing on the short-term reactions of the trees, distinct drought events and periods were discovered. In each climatic region, similar growth reactions developed after drought periods. A decline in growth rate occurred in the second or third year after the drought event. Oaks in South Africa are currently exposed to a warmer climate with more frequent drought events. This climatic condition is a future prediction also for Europe. In view of this climate change, we discuss the consequences of the long- and short- term growth behaviour of oaks grown in the climate of South Africa for a tree species selection that naturally occurs in Europe

    Mortality reduces overyielding in mixed Scots pine and European beech stands along a precipitation gradient in Europe

    Get PDF
    Many studies show that mixed species stands can have higher gross growth, or so-called overyielding, compared with monocultures. However, much less is known about mortality in mixed stands. Knowledge is lacking, for example, of how much of the gross growth is retained in the standing stock and how much is lost due to mortality. Here, we addressed this knowledge gap of mixed stand dynamics by evaluating 23 middle-aged, unthinned triplets of monospecific and mixed plots of Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) repeatedly surveyed over 6-8 years throughout Europe. For explanation of technical terms in this abstract see Box 1. First, mixed stands produced more gross growth (+10%) but less net growth (MINUS SIGN 28%) compared with the weighted mean growth of monospecific stands. In monospecific stands, 73% of the gross growth was accumulated in the standing stock, whereas only 48% was accumulated in mixed stands. The gross overyielding of pine (2%) was lower than that of beech (18%). However, the net overyielding of beech was still 10%, whereas low growth and dropout of pine caused a substantial reduction from gross to net growth. Second, the mortality rates, the self- and alien-thinning strength, and the stem volume dropout were higher in mixed stands than monospecific stands. The main reason was the lower survival of pine, whereas beech persisted more similarly in mixed compared with monospecific stands. Third, we found a 10% higher stand density in mixed stands compared with monospecific stands at the first survey. This superiority decreased to 5% in the second survey. Fourth, the mixing proportion of Scots pine decreased from 46% to 44% between the first and second survey. The more than doubling of the segregation index (S) calculated by Pielou index (S increased from 0.2 to 0.5), indicated a strong tendency towards demixing due to pine. Fifth, we showed that with increasing water supply the dropout fraction of the gross growth in the mixture slightly decreased for pine, strongly increased for beech, and also increased for the stand as a whole. We discuss how the reduction of inter-specific competition by thinning may enable a continuous benefit of diversity and overyielding of mixed compared with monospecific stands of Scots pine and European beech.OA-hybri

    Implications of reduced stand density on tree growth and drought susceptibility: A study of three species under varying climate

    Get PDF
    ProducciĂłn CientĂ­ficaA higher frequency of increasingly severe droughts highlights the need for short-term measures to adapt existing forests to climate change. The maintenance of reduced stand densities has been proposed as a promising silvicultural tool for mitigating drought stress. However, the relationship between stand density and tree drought susceptibility remains poorly understood, especially across ecological gradients. Here, we analysed the effect of reduced stand density on tree growth and growth sensitivity, as well as on short-term drought responses (resistance, recovery, and resilience) of Scots pine (Pinus sylvestris L.), sessile oak (Quercus petraea (Matt.) Liebl.), and ponderosa pine (Pinus ponderosa Douglas ex C. Lawson). Tree ring series from 409 trees, growing in stands of varying stand density, were analysed at sites with different water availability. For all species, mean tree growth was significantly higher under low compared with maximum stand density. Mean tree growth sensitivity of Scots pine was significantly higher under low compared with moderate and maximum stand density, while growth sensitivity of ponderosa pine peaked under maximum stand density. Recovery and resilience of Scots pine, as well as recovery of sessile oak and ponderosa pine, decreased with increasing stand density. In contrast, resistance and resilience of ponderosa pine significantly increased with increasing stand density. Higher site water availability was associated with significantly reduced drought response indices of Scots pine and sessile oak in general, except for resistance of oak. In ponderosa pine, higher site water availability significantly lessened recovery. Higher site water availability significantly moderated the positive effect of reduced stand density on drought responses. Stand age had a significantly positive effect on the resistance of Scots pine and a negative effect on recovery of sessile oak. We discuss potential causes for the observed response patterns, derive implications for adaptive forest management, and make recommendations for further research in this field.Eva Mayr-Stihl Stiftung (170124)ERANet SUMFOREST project REFORM- AEI (PCIN-2017-026)German Federal Ministry of Food and Agriculture (2816ERA02S

    Possibilities and Limitations of Spatially Explicit Site Index Modelling for Spruce Based on National Forest Inventory Data and Digital Maps of Soil and Climate in Bavaria (SE Germany)

    Get PDF
    Combining national forest inventory (NFI) data with digital site maps of high resolution enables spatially explicit predictions of site productivity. The aim of this study is to explore the possibilities and limitations of this database to analyze the environmental dependency of height-growth of Norway spruce and to predict site index (SI) on a scale that is relevant for local forest management. The study region is the German federal state of Bavaria. The exploratory methods comprise significance tests and hypervolume-analysis. SI is modeled with a Generalized Additive Model (GAM). In a second step the residuals are modeled using Boosted Regression Trees (BRT). The interaction between temperature regime and water supply strongly determined height growth. At sites with very similar temperature regime and water supply, greater heights were reached if the depth gradient of base saturation was favorable. Statistical model criteria (Double Penalty Selection, AIC) preferred composite variables for water supply and the supply of basic cations. The ability to predict SI on a local scale was limited due to the difficulty to integrate soil variables into the model
    • 

    corecore